Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557364

RESUMEN

Some transition-metal dichalcogenides have been actively studied recently owing to their potential for use as thermoelectric materials due to their superior electronic transport properties. Iron-based chalcogenides, FeTe2, FeSe2 and FeS2, are narrow bandgap (~1 eV) semiconductors that could be considered as cost-effective thermoelectric materials. Herein, the thermoelectric and electrical transport properties FeSe2-FeS2 system are investigated. A series of polycrystalline samples of the nominal composition of FeSe2-xSx (x = 0, 0.2, 0.4, 0.6, and 0.8) samples are synthesized by a conventional solid-state reaction. A single orthorhombic phase of FeSe2 is successfully synthesized for x = 0, 0.2, and 0.4, while secondary phases (Fe7S8 or FeS2) are identified as well for x = 0.6 and 0.8. The lattice parameters gradually decrease gradually with S content increase to x = 0.6, suggesting that S atoms are successfully substituted at the Se sites in the FeSe2 orthorhombic crystal structure. The electrical conductivity increases gradually with the S content, whereas the positive Seebeck coefficient decreases gradually with the S content at 300 K. The maximum power factor of 0.55 mW/mK2 at 600 K was seen for x = 0.2, which is a 10% increase compared to the pristine FeSe2 sample. Interestingly, the total thermal conductivity at 300 K of 7.96 W/mK (x = 0) decreases gradually and significantly to 2.58 W/mK for x = 0.6 owing to the point-defect phonon scattering by the partial substitution of S atoms at the Se site. As a result, a maximum thermoelectric figure of merit of 0.079 is obtained for the FeSe1.8S0.2 (x = 0.2) sample at 600 K, which is 18% higher than that of the pristine FeSe2 sample.

2.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947161

RESUMEN

One means of enhancing the performance of thermoelectric materials is to generate secondary nanoprecipitates of metallic or semiconducting properties in a thermoelectric matrix, to form proper band bending and, in turn, to induce a low-energy carrier filtering effect. However, forming nanocomposites is challenging, and proper band bending relationships with secondary phases are largely unknown. Herein, we investigate the in situ phase segregation behavior during melt spinning with various metal elements, including Ti, V, Nb, Mo, W, Ni, Pd, and Cu, in p-type Bi0.5Sb1.5Te3 (BST) thermoelectric alloys. The results showed that various metal chalcogenides were formed, which were related to the added metal elements as secondary phases. The electrical conductivity, Seebeck coefficient, and thermal conductivity of the BST composite with various secondary phases were measured and compared with those of pristine BST alloys. Possible band alignments with the secondary phases are introduced, which could be utilized for further investigation of a possible carrier filtering effect when forming nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...